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Abstract
We present a class of mappings between the fields of the Cremmer–Sherk
and pure BF models in 4D. These mappings are established by two distinct
procedures. First, a mapping of their actions is produced iteratively resulting
in an expansion of the fields of one model in terms of progressively
higher derivatives of the other model fields. Second, an exact mapping is
introduced by mapping their quantum correlation functions. The equivalence
of both procedures is shown by resorting to the invariance under field scale
transformations of the topological action. Related equivalences in 5D and 3D
are discussed. The mapping in (2+1)D from the Maxwell–Chern–Simons to
pure Chern–Simons models is investigated from a similar perspective.

PACS numbers: 11.10.Kk, 11.15.Tk

1. Introduction

The search for ultraviolet renormalizable models has always been one of the most attractive
and relevant aspects of quantum field theory. As is well known, the program of describing the
electro-weak interactions in the language of QFT is based on the construction of the Higgs
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mechanism for mass generation of the vector bosons. However, this mechanism relies on the
existence of a scalar particle, the Higgs boson, whose experimental evidence is still lacking.

In this context, the topological mechanism for mass generation is attractive, since it
provides masses for the gauge vector bosons without the explicit introduction of new scalar
fields. For example, in three-dimensional spacetime, the topological non-Abelian Chern–
Simons term generates mass for the Yang–Mills fields while preserving the exact gauge
invariance [1]. In four dimensions, the topological mass generation mechanism occurs in the
case of an anti-symmetric tensorial field Bµν . It has been shown that the Cremmer–Sherk
action gives a massive pole to the vector gauge field in the Abelian context. This model is
described by the action [2]

S =
∫

d4x

(
−1

4
FµνFµν +

1

12
HµνρH

µνρ +
m

4
εµνρσFµνBρσ

)
. (1.1)

Indeed, as was shown [3], this model exists only in the Abelian version. In fact, possible
non-Abelian generalizations of the action (1.1) will necessarily require non-renormalizable
couplings, as in [4], or the introduction of extra fields [5]. Anti-symmetric fields in four
dimensions also deserve attention since they appear naturally by integrating out the fermionic
degrees of freedom in favour of bosonic fields in bosonization approaches. The fermionic
current turns out to be expressed in terms of derivatives of the tensorial field as a topologically
conserved current. The coupling of this current to the gauge field leads to terms in the effective
action similar to the last one in (1.1).

An important property of the three-dimensional Yang–Mills type actions, in the presence
of the Chern–Simons term, was pointed out in [6], i.e., it can be cast in the form of a pure
Chern–Simons action through a nonlinear covariant redefinition of the gauge connection [7].
The quantum consequences of this fact were investigated in the BRST framework yielding
an algebraic proof of the finiteness of the Yang–Mills action with topological mass [8]. A
generalization of this mapping to the Cremmer–Sherk’s action was presented in [9] both in
the Abelian and in the non-Abelian cases.

In this work, we generalize the recursive mapping between Cremmer–Sherk’s action
and the pure topological BF model presented in [9] by presenting the general mapping in
terms of arbitrary parameters. With this the fields of one action are expressed as a series of
progressively higher derivatives of the other model fields with a new parameter introduced at
each step. This mapping is also established along a different line in which the propagators of
one action are reproduced using a closed expression in terms of the other action fields. This
closed expression depends on arbitrary functions. With this it may be expanded and the generic
recursive mapping reobtained. This exposes the non-local nature of the mapping. Related
mappings in higher and lower dimensions are discussed. The mapping from Maxwell–Chern–
Simons to Chern–Simons models is analysed from a similar perspective.

2. Mapping the fields

The aim of this section is to establish the classical equivalence between the Cremmer–Sherk’s
action and the pure BF theory, i.e., the first action can be mapped to the second one through
a redefinition of the gauge field. Following the same steps of the three-dimensional case [6],
we search for a redefinition of the fields Aµ and Bµν as a series in powers of 1/m in terms of
the fields Âµ and B̂µν in such a way that the relation below is valid8:

SM(A) + SH (B) + SBF(A,B) = SBF(Â, B̂), (2.1)
8 We work in the Minkowski spacetime so that εµνρσ εµναβ = −2(δ

ρ
α δσ

β − δ
ρ
β δσ

α ). We use ε0123 = 1 and diag
ηµν = (1, −1,−1,−1).
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where

SM(A) = −1

4

∫
d4x(FµνFµν), (2.2)

SH (B) = +
1

12

∫
d4x(HµνρH

µνρ), (2.3)

SBF(A,B) = m

4

∫
d4x(εµνρσ FµνBρσ ) (2.4)

and the curvatures Fµν and Hµνρ are the same given in (1.1), i.e.,

Fµν = ∂µAν − ∂νAµ

and

Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ.

Indeed taking the field redefinitions in the form

Âµ = Aµ +
∞∑

n=1

1

(2m)n
ϑn

µ, B̂µν = Bµν +
∞∑

n=1

1

(2m)n
φn

µν, (2.5)

the equality expressed in (2.1) is implemented by recursively fixing the terms. We find the
expressions

φ2n+1
µν = −b2n+1

2
εµναβ � nF αβ, ϑ2n+1

µ = c2n+1

3
εµναβ � nHναβ,

φ2n
µν = b2n � n−1∂αHαµν, ϑ2n

µ = c2n � n−1∂νFνµ,

(2.6)

where the constants are defined as

b2n+1 = −
n∑

j=1

c2j b2(n−j)+1, (2.7)

c2n+1 = −
n∑

j=1

b2j c2(n−j)+1, (2.8)

b2n = Bn

2
n∑

j=1

b2j−1c2(n−j)+1 −
n−1∑
j=1

b2j c2(n−j)

 , (2.9)

c2n = (1 − Bn)

2
n∑

j=1

b2j−1c2(n−j)+1 +
n−1∑
j=1

b2j c2(n−j)

 . (2.10)

Here Bn are arbitrary constants introduced at each even step of the process while b1 = −1 and
c1 = −1/2.

The first terms can be expressed as

ϑ1
µ = −1

6
εµναβHναβ,

ϑ2
µ = (1 − B1)∂

νFνµ,

ϑ3
µ = B1

6
εµναβ �Hναβ,
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ϑ4
µ = (−1 − B1 + B2

1

)
(1 − B2)� ∂νFνµ,

φ1
µν = −1

2
εµναβF αβ,

φ2
µν = B1

3
∂αHαµν, (2.11)

φ3
µν = −1 − B1

2
εµναβ�Fαβ,

φ4
µν = B2

(−1 − B1 + B2
1

)
3

� ∂αHαµν.

As we can see, up to the fourth order in the mass parameter, the coefficients, φn
µν and ϑn

µ,

shown in (2.11), depend on the two arbitrary dimensionless parameters, B1 and B2. In fact at
each new even order in 1/m, a new arbitrary parameter is allowed to be introduced. As we
shall see, this is to be expected.

The formal series (2.5), which redefine the fields Aµ and Bµν, give the mapping we were
looking for.

Note that the gauge symmetry of the Cremmer–Sherk action is expressed as

δgAµ = ∂µε, δgBµν = 0 (2.12)

and

δtAµ = 0, δtBµν = ∂µεν − ∂νεµ, (2.13)

while the BF topological action is invariant under analogous transformations

δgÂµ = ∂µε̂, δgB̂µν = 0 (2.14)

and

δt Âµ = 0, δt B̂µν = ∂µεν − ∂νε̂µ. (2.15)

The mapping (2.5) translates the gauge transformations of one pair of fields straightforwardly
into the ones of the other pair in such a way that ε̂ and ε̂µ are identified as ε and εµ. This
occurs since the higher order terms in (2.6) have been chosen to be gauge invariant.

2.1. Exact mapping

Let us express here the Cremmer–Sherk fields in terms of the pure BF fields using a new
procedure. It will be convenient to change the parameter m of the pure BF action to m̂. The
Cremmer–Sherk propagators are given by

〈ıT BµνBαβ〉 = (Pµν,αβ + G1Kµν,αβ)
2

�(� + m2)
,

〈ıT BµνAα〉 = −〈ıT AαBµν〉 = (Sµνα)
m

�(� + m2)
,

〈ıT AµAα〉 = (Pµ,ν + G2Kµ,ν)
−1

�(� + m2)
.

(2.16)

The pure BF propagators are given by

〈ıT B̂µνB̂αβ〉 = (Ĝ1Kµν,αβ)
2

m̂� ,

〈ıT B̂µνÂα〉 = −〈ıT ÂαB̂µν〉 = (Sµνα)
1

m̂ � ,

〈ıT ÂµÂν〉 = (Ĝ2Kµ,ν)
1

m̂ � .

(2.17)
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Here the projectors are given by

Pµν,αβ = 1
2δµν,αβ� − 1

2Kµν,αβ,

Kµν,αβ = δµ[α∂ν∂β] − δν[α∂µ∂β],

Sµνα = εµναβ∂β,

Pµν = δµν� − ∂µ∂ν,

Kµν = ∂µ∂ν,

(2.18)

where δµν,αβ = δµαδνβ − δµβδνα . The parameters G and Ĝ are introduced to fix the gauge.
Let us try to express the fields as

Aµ =
(

CAAPµ,ν +

√
m̂

m
δµν

)
Âν + CABSµαβB̂αβ,

Bµν = CBASµναÂν +

(
CBBPµν,αβ +

1

2

√
m̂

m
δµν,αβ

)
B̂αβ .

(2.19)

Computing the correlators of the Cremmer–Sherk field using this mapping and comparing with
(2.16), the structure functions are fixed. They turn out to be given by the non-local operators

CAA = 2
1
2 m̂

1
2

σ�

[
m −

√
m2 + �

m2 + �

] 1
2

−
√

m̂

m

1

� ,

CBB = σm̂
1
2

2
3
2 �

[
m −

√
m2 + �

m2 + �

] 1
2

−
√

m̂

m

1

� ,

CAB = σm̂
1
2

2
5
2

[(
m −

√
m2 + �

)
(m2 + �)

]− 1
2
,

CBA = 2
1
2 m̂

1
2

σ

[(
m −

√
m2 + �

)
(m2 + �)

]− 1
2
.

(2.20)

Note that the non-local operators indeed map local fields of local models, the Cremmer–
Sherk and pure BF models. Observe the presence of the arbitrary operator σ in these equations.
Its presence should be expected since the set of transformations

Â −→ σÂ, B̂ −→ 1

σ
B̂, (2.21)

does not affect any correlator of the BF model. The presence of σ in the mapping is due to
the freedom in redefining the BF fields. This is the ultimate reason for the presence of the free
parameters (B1, B2 . . .) in the mapping seen previously. In fact the exact inverse mapping is
given by

Âµ =
(

ĈAAPµ,ν +

√
m

m̂
δµν

)
Aν + ĈABSµαβBαβ,

B̂µν = ĈBASµναAν +

(
ĈBBPµν,αβ +

√
m

m̂

1

2
δµν,αβ

)
Bαβ,

(2.22)
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with

ĈAA = σ

2
3
2 m̂

1
2 �

[
(m −

√
m2 + �)

3
2

(m2 + �)
1
2

]
−

√
m

m̂

1

� ,

ĈBB = 2
1
2

σm̂
1
2 �

[
(m −

√
m2 + �)

3
2

(m2 + �)
1
2

]
−

√
m

m̂

1

� ,

ĈAB = σ

2
5
2 m̂

1
2

[
(m −

√
m2 + �)

(m2 + �)

] 1
2

,

ĈBA = 2
1
2

σm̂
1
2

[
(m −

√
m2 + �)

(m2 + �)

] 1
2

.

(2.23)

The iterative mapping may be retrieved by expanding the structure functions in terms of
�
m2 and, at the same time, expressing the operator σ in terms of arbitrary parameters as

σ =
∞∑

n=0

Cn

( �
m2

)n

(2.24)

and similarly to its inverse. With this equation (2.22) will reproduce equations (2.11) for
m̂ = m. The independent parameters Bj are thus seen to owe their origin to the freedom in
defining the operator σ . This allows for an independent parameter, Cj , to be introduced at
each order in � j .

The structure functions can be alternatively expanded in powers of m instead of powers of
1/m. Particularly important is to consider the limit m −→ 0 in equations (2.23). This leads
to the mapping from the fields of a model without topological terms to the purely topological
model fields:

ĈAA = σ

2
3
2 m̂

1
2

�− 3
4 , ĈBB = − 2

1
2

σm̂
1
2

�− 3
4 ,

ĈAB = −σ

2
5
2 m̂

1
2

�− 1
4 , ĈBA = 2

1
2

σm̂
1
2

�− 1
4 .

(2.25)

The inverse of this mapping is easily obtained. It can also be obtained by performing
the limit m −→ 0 directly in (2.20) provided that the term with 1/� is first reabsorbed in
equation (2.19) by eliminating the identity term in this equation. This amounts to a change in
the gauge fixing conditions. The series expansions in powers of m of (2.23) turn out to be a
set of series in powers of m/

√
� multiplying its zeroth-order expressions (2.25). These series

can be alternatively obtained in a procedure that parallels the one used to obtain the iterative
mapping in powers of � /m2. For this (2.25) should be taken as the zeroth-order expression
that maps the action SM(A) + SH (B) to SBF(Â, B̂). Now the perturbation SBF(A,B) is taken
into account and its contribution is cancelled at each step of the process with higher order terms.
Comparing to the previous procedures the roles of the kinetic terms are thus reversed. The
presence of

√
� in these series may seem suspicious at first sight. After all if the propagators

of the Cremmer–Sherk model fields are expanded in powers of m they turn out to produce
a series of m2/�. Indeed, an explicit computation shows that when the series obtained by
expanding (2.20) is used to obtain the propagators of A and B from the ones of Â and B̂ the
terms with square roots of the D’Alembertian cancel out.
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3. Dimensional reduction considerations

Let us consider in 5D the model with the anti-symmetric field which represents a direct
generalization of the Maxwell–Chern–Simons model [10, 11]

S =
∫

d5x

(
1

6
H ∗

µνρH
µνρ + ı

m

24
εµναβρ(B∗

µνHαβρ − BµνH
∗
αβρ)

)
. (3.1)

The mapping of the field to the pure Chern–Simons field

Ŝ = ı

∫
d5x

(
m

24
εµναβρ(B∗

µνHαβρ − BµνH
∗
αβρ)

)
(3.2)

is implemented by the transformation

Bµν = B̂µν +

[
m

1
2

2
1
2 �

[
(m −

√
m2 + �)

1
2

(m2 + �)
1
2

]
− 1

�

]
Pµν,αβB̂αβ

− ı
m

1
2

2
1
2 6

[
(m −

√
m2 + �)

(m2 + �)

] 1
2

εµναβρĤ αβρ. (3.3)

This result is obtained repeating the argument of section 2b in the five-dimensional spacetime.
Note that in this case the topological model does not present any freedom in rescaling the fields
as occurs in 4D. The dimensional reduction of model (3.1) by precluding any dependence on
the variable x4 so that Bµ4 := Aµ leads to complex fields Cremmer–Sherk models [10]

LM(B) = −1

2
F ∗µν

Fµν +
1

6
H ∗

µνρH
µνρ − ı

m

4
εµνρσ (F ∗

µνBρσ − FµνB
∗
ρσ ). (3.4)

Expressed in terms of real and imaginary components, this Lagrangian is related to a
couple of models in (1.1). Under similar considerations, the topological model (3.2) is led to
the pure (complex) BF model (2.4) or to a pair of real BF models. Within this setting, the
mapping of the 5D fields (3.3) is reduced to the exact mapping in equations (2.19) and (2.20)
if we eliminate the freedom in the 4D mapping by identifying σ = 2. Thus, the dimensional
reduction turns out to give a criterion to fix in a natural fashion the mapping of the fields.

As we have seen, the mapping connecting the model with topological mass generation in
four dimensions to the pure topological BF model is related to similar properties of models
in five-dimensional spacetime which present only the anti-symmetric field. In this section
we perform one more step in the dimensional reduction programme presenting the similar
property appearing in the model obtained after the dimensional reduction of the (real field)
Cremmer–Sherk’s action to 3D. The reduced action is given by

S = Stop + Sntop

=
∫

d3x

(
−m

6
εµνρϕHµνρ +

m

2
εµνρcµFνρ

)
+

∫
d3x

(
−1

4
GµνGµν − 1

4
FµνFµν +

1

12
HµνρH

µνρ +
1

2
∂µϕ∂µϕ

)
,

where, after the reduction,

Aµ → Aµ,ϕ, Bµν → Bµν, Cµ, Gµν = ∂µCν − ∂νCµ.

The mapping to ensure that

Stop(Âµ, B̂µν, ϕ̂, ĉµ) = Stop (Aµ, Bµν, ϕ, cµ) + Sntop(Aµ, Bµν, ϕ, cµ),
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will be given by

Âµ = Aµ +
∞∑

n=1

1

(2m)n
ϑn

µ, (3.5)

B̂µν = Bµν +
∞∑

n=1

1

(2m)n
φn

µν, (3.6)

ϕ̂ = ϕ +
∞∑

n=1

1

(2m)n
αn, (3.7)

ĉµ = cµ +
∞∑

n=1

1

(2m)n
kn
µ. (3.8)

Following the same lines as in the previous section the coefficients are easily obtained.
It should be clear that the above expression may be summed up leading to expressions that

parallel the exact mapping obtained in D = 4. Indeed, the classical argument of mapping the
actions as depicted above allows us to obtain the coefficients in dimensionally reduced models
from the knowledge of the higher dimensional mapping coefficients. Since the propagators
are the inverses of the operators defining the actions, their exact mapping in lower dimensions
can also be read from the corresponding expressions in higher dimensions. The non-local
operators that map the local fields are essentially the same ones.

4. Maxwell–Chern–Simons model

Let us consider now in 3D the generic model described by the Lagrangian

L1 = − η

2m
AµP µνCAν +

η

2
AµSµνDAν +

1

2
AµKµναAν. (4.1)

Here C and D are arbitrary scalar operators, P µν = � δµν − ∂µ∂ν, Sµν = εµνα∂α and the term
with Kµν = ∂µ∂ν corresponds to a gauge fixing term.

The two-point function for this field is obtained as

Gµν = i〈T AµAν〉 = Pµν

mC
η(m2D2 � + C2 � 2)

− Sµν

m2D
η(m2D2 � + C2 � 2)

+ Kµνγ. (4.2)

We perform the mapping

Aµ = f̂ SµνÂν + ĝP µνÂν + k̂KµνÂν, (4.3)

where the action for the field Âµ is the Chern–Simons action so that

〈ıT ÂµÂν〉 = −Sµν

1

� + Kµνγ̂ . (4.4)

Using the algebra P 2 = �P,PS = �S and S2 = −P it is readily obtained that

〈ıT AµAν〉 = (−ĝ2 � + f̂ 2)Sµν + 2f̂ ĝPµν + k̂γ̂ � 2Kµν. (4.5)

The propagators in (4.2) and (4.5) are indeed identical if the form factors satisfy

ĝ =
√

m

2η
C

[
�(m2D2 + C2 �)

(
ε(� C2 + m2D2)

1
2 − mD

)]− 1
2
, (4.6)
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and

f̂ =
√

m

2η

[
ε(� C2 + m2D2)

1
2 − mD

�(m2D2 + � C2)

] 1
2

(4.7)

where ε = ±1 controls the different branches of the square root. We thus obtain the exact
mapping from a field with the action described by (4.1) to a field with the pure Chern–Simmons
action by means of a mapping with rather involved non-local structure functions.

Let us particularize to some interesting limiting cases. First consider the case C = D = 1.
The original action corresponds to the Maxwell–Chern–Simons model. The mapping to the
pure Chern–Simons field is implemented by the structure functions:

ĝ =
√

m

2η

[
m + ε(� + m2)

1
2

� 2(m2 + �)

]1/2

(4.8)

f̂ =
√

m

2η

[
−m + ε(� + m2)

1
2

�(m2 + �)

]1/2

. (4.9)

Taking the limit where η = m −→ 0 with ε = 1 leads the original action to the pure
Maxwell field action. This will be used in the following to establish a series in powers of m.
It is readily obtained that the limiting structure functions become the much simpler non-local
operators [12]

ĝ = 1√
2

�− 5
4 (4.10)

f̂ = 1√
2

�− 3
4 . (4.11)

Next consider the non-local vectorial model which results from the bosonization of the
free fermionic field [13]. In this case we consider C = �−1/2 and D = 1 so that

L1 = η

4m
Fµν�−1/2Fµν +

η

2
AµSµνAν +

1

2
AµKµναAν. (4.12)

Note that in this case the parameter m is dimensionless. The structure functions then become

ĝ =
√

m

2η
�−1

[(−m + ε(1 + m2)
1
2
)
(m2 + 1)

]−1/2
(4.13)

f̂ =
√

m

2η
�−1/2

[
−m + ε(1 + m2)

1
2

m2 + 1

]1/2

. (4.14)

Some limiting cases of this last non-local model are worth considering explicitly. If
m −→ ∞, the original action is already the Chern–Simons action. The structure function
f̂ = 0 while ĝ = � /

√
2 are obtained with the signal of the square root signalized by ε = 1.

Using the freedom in defining the gauge fixing term, this implements the identity mapping of
the fields A and Â. The same limit taken with the alternative signal of the square root with
ε = −1 leads instead to ĝ = 0 and

f̂ = −ı

η
√

�
, (4.15)

and this implements a mapping from a vectorial to pseudo-vectorial field both with Chern–
Simons action.
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In the following we consider the Maxwell–Chern–Simons model, C = D = 1 and obtain
the iterative solutions. First we consider the infrared expansion. We expand the structure
functions in powers of � /m2 and obtain

ĝ = 1√
η �

[
1 − 3 �

2m2
+

35 � 2

128m4
− 231 � 3

1024m6
+

6435 � 4

32960m8
+ · · ·

]
(4.16)

f̂ = 1

2m
√

η

[
1 − 5 �

23m2
+

63 � 2

27m4
− 429 � 3

210m6
+ · · ·

]
. (4.17)

This series has been obtained in [6] through an iterative procedure similar to the one we used in
the four-dimensional case. The exact mapping displays the non-local feature of the structure
functions which may be somewhat masked in the direct iterative procedure.

Next we consider the series in the opposite ultraviolet limit, expanding in powers of
y = m/

√
�. We see that

ĝ =
√

m

2η
�− 5

4

[
1 +

1

2

m√
�

− 3

8

(
m√
�

)2

− 5

16

(
m√
�

)3

+ · · ·
]

(4.18)

and that

f̂ =
√

m

2η
�− 3

4

[
1 − 1

2

m√
�

− 3

8

(
m√
�

)2

+
5

16

(
m√
�

)3

+ · · ·
]

. (4.19)

Note the interesting property that although the mapping of the field involves odd and even
powers of y when computing the correlation functions for the field using the series expansion
only even powers of y persist. Indeed this comes out since the series for f̂ and ĝ differ,
essentially, for the signals of the odd-order terms. Then computing the propagator explicitly,
using equations (4.18) and (4.19) in equation (4.5) and disregarding the gauge-dependent term,
leads to

Gµν = i〈T AµAν〉 = m

η � 2
(Pµν − mSµν)

(
1 − m2

� +
m4

� 2
+ · · ·

)
. (4.20)

This reproduces the series in powers of m2/� of the correlator of the MCS model (4.2).
Let us also comment that the (ultraviolet) series in powers of y, quite similar to the 4D

case, can also be obtained recursively in a procedure entirely analogous to the one used in [6]
to obtain the infrared series. First we should consider the Maxwell term in the MCS model.
The CS action for the Â field is retrieved from this term alone by considering the first terms
in ultraviolet expansion for both f̂ and ĝ. This amounts to considering the mapping from
pure Maxwell action to the pure Chern–Simons action we obtained before. Next, introducing
perturbations in both expressions and incorporating the Chern–Simons term of the MCS model,
one is led to the series in powers of y obtaining the terms recursively by imposing to the Â

field the preservation of the CS action. The series in powers of m/
√

� emerges from the lower
derivative power in the Chern–Simons term compared to the Maxwell term.

5. Conclusions and discussions

In this work, we have studied the procedure that allows us to map the Maxwell–Chern–Simons
field to the pure Chern–Simons field in (2+1)D, and in (3+1)D the Cremmer–Sherk model,
to the Abelian version of the BF model. A striking importance of these mappings stems
from the fact that the dynamical mass mechanism, which occurs in the topologically massive
models, can be described in the context of purely topological models. The latter models
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presenting physical contents remarkably distinct from the former ones may offer new insights
on this physical mechanism. Besides, the possibility of obtaining the Green functions of
the topologically massive models from those of the topological models which present scale
invariance may offer valuable computational advantages.

The four-dimensional mapping has been established firstly within an iterative general
procedure. One remarkable new aspect that emerges is the presence of a great deal of freedom
in the mapping in four dimensions. This freedom has been elucidated as due to the form of
the pure topological action which is defined through mixed products of fields. The invariance
under rescaling of the fields of the BF type action is responsible for it. Since this kind of
action is naturally considered in even dimensional topological models, the non-uniqueness in
the mapping should be expected to hold in even dimensions.

The exact mappings of the fields, both in four and in three dimensions, have been
presented. The exact mapping may be established even in the cases in which the topological
terms are absent. The topologically massive cases allows for series expansions of the exact
mappings. The knowledge of the exact mappings provides us with a typical scale, given by
the mass parameter m. The mapping may be used for instance for computing loop variables
of the Cremmer–Sherk model using the corresponding expressions of the pure BF model.
This suggests performing the computation in closed fashion without resource to expansions
given by the iterative mapping. In any case the mass parameter m may provide valuable hints
to discern in which cases computations using the iterative mapping should or should not be
considered reliable. It can even provide alternative expansions for instance in direct powers
of m instead of the inverse power series provided by the iterative mapping.

In the three-dimensional case indeed, the mapping from the Maxwell–Chern–Simons
model to the Chern–Simons model, the knowledge of the explicit non-iterative expression for
the structure functions allows us to revisit the computation of the link invariants for the MCS
model from the corresponding expression for the pure CS field addressed in [6]. The explicit
expression allows one to further understand the limits under which the iterative mapping should
be considered. Indeed, the complete non-iterative expression is highly non-local while any
truncation of the series involves essentially a local expression with the order of the derivative
dependent on the order of the polynomial expression resulting from the series truncation.
This explains why it should not be expected that expectation values of loop variables for
non-intercepting curves with the MCS model field should have the same values as the ones
computed with the pure CS field for arbitrary loops. The null character of the contribution of
each iterative term to the corrections to the CS field loop correlations coming from the Maxwell
term obtained correctly in [6] is dependent on the local character of the truncated mapping. It
should not be confused with assertions to the vanishing of the exact result contribution. The
non-locality of the exact mapping is responsible for non-null contributions. This result that
each series term contribution is null while the ‘summed series’ gives non-null contributions
signalizes that an expansion in powers of x = � /m2 is not the proper one for doing the
computation of general loop variables correlation functions. In this sense, it seems one is
trying to perform an expansion in powers of x of a function in which all derivatives are zero
for x = 0. It does not mean the function is identically zero but only that the function cannot
be expanded in this series. It is thus much more reliable to deal with the opposite series in
powers of y we presented here.

The dimensional reduction arguments presented here relates the mechanism of mapping
from more involved actions to structurally minimized models in different dimensions. Besides
providing a criterion to fix the mapping, the kinematical dimensional reduction may offer
insights as to the low momenta field variables needed in dimensional reductions of high
temperature limits in field theory. Actions of the Cremmer–Sherk type are expected to play
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a role in approaches where current fermions condensates are explicitly controlled with a
bosonization scheme. The high temperature limit of QED under this setting will lead to a
dimensional reduction paralleling the one provided here.

In order to properly appreciate the physical meaning of the mapping, it is important to
call attention to the necessity of defining the physical content of a local field theory in terms
of the local polynomial algebra of observable fields. The mapping provided here relates two
local models each with its physical Hilbert space reconstructed from the Wightmann functions
of its own polynomial algebra [14, 15]. Since the mapping involves non-local functions it
should be clear that within the pure BF model there are two Hilbert spaces to be obtained. One
Hilbert space is obtained from the local polynomial algebra of fields defined after expressing
the Cremmer–Sherk fields non-locally in terms of the pure BF model fields and it should not
be confused with the Hilbert space of the pure BF model itself. This later is obtained from
its local polynomial algebra of fields. Although constructed with the same model fields, the
first Hilbert space is not isomorphic to the second one. Instead, it will be isomorphic to the
Hilbert space of the Cremmer–Sherk model. The same reasoning goes in the other direction
of the mapping. In this context it is clear that neither Hilbert space should be considered as a
subspace of the other. It is not a mapping of physical states that is being addressed here but a
non-local mapping among the fields.

The generality of the mapping considered in the four-dimensional case can be further
enhanced by introducing arbitrary scalar operators in the definitions of the quadratic non-
mixed terms of the vector and anti-symmetric fields and considering the parameter m as a
scalar operator acting either on vector or anti-symmetric field similar to what was done in the
three-dimensional cases. This generalized gauge invariant action will be mapped to the pure
BF model in a very similar way with the structure functions of the mapping being slightly
modified. Furthermore, it is to be expected [8] that the introduction of arbitrary gauge invariant
interaction terms can be absorbed by considering nonlinear mappings.
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